Forecast accuracy measures for exception reporting using receiver operating characteristic curves
نویسنده
چکیده
The exception principle of management reporting suggests that, under ordinary conditions, operational staff persons make decisions, but that the same staff refer decisions to upper-level managers under exceptional conditions. Forecasts of large changes or extreme values in product or service demand are potential triggers for such reporting. Seasonality estimates in univariate forecast models and leading independent variables in multivariate forecast models are among the approaches to forecasting exceptional demand, a forecast activity that this paper identifies as requiring new accuracy measures based on the tails of sampled forecast error distributions, rather than conventional measures which use the central tendency. For this purpose, the paper introduces the application of the receiver operating characteristic (ROC) framework, which has been used for the assessment of exceptional behavior in many fields. In a case study on serious violent crime in Pittsburgh, Pennsylvania, the simplest, non-naı̈ve univariate forecast method is best for forecasting ordinary conditions using conventional forecast accuracy measures, but the most complex multivariate model is best for forecasting exceptional conditions using ROC forecast accuracy measures. c © 2008 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
منابع مشابه
Large-change forecast accuracy: Reanalysis of M3-Competition data using receiver operating characteristic analysis
This paper applies receiver operating characteristic (ROC) analysis to micro-level, monthly time series from the M3-Competition. Forecasts from competing methods were used in binary decision rules to forecast exceptionally large declines in demand. Using the partial area under the ROC curve (PAUC) criterion as a forecast accuracy measure and paired-comparison testing via bootstrapping, we find ...
متن کاملUsing Receiver Operating Characteristic Analysis to Evaluate Large-Change Forecast Accuracy
This paper applies receiver operating characteristics (ROC) analysis to M3 Competition, micro monthly time series for one-month-ahead forecasts. Using the partial area under the curve (PAUC) criterion as a forecast accuracy measure and paired-comparison testing via bootstrapping, we find that complex methods (AutomatANN, Flores-Pearce2, Forecast ProSmart FCS, and Theta) perform best for forecas...
متن کاملUsing Receiver Operating Characteristic (ROC) Curves to Evaluate Digital Mammography
Receiver operating characteristic (ROC) curves are frequently used to compare the accuracy of two or more imaging modalities. This paper addresses the use of ROC analysis to evaluate the speed and accuracy of digital mammography, as compared to conventional film-screen mammography.
متن کاملNonparametric Covariate Adjustment for Receiver Operating Characteristic Curves
The accuracy of a diagnostic test is typically characterised using the receiver operating characteristic (ROC) curve. Summarising indexes such as the area under the ROC curve (AUC) are used to compare different tests as well as to measure the difference between two populations. Often additional information is available on some of the covariates which are known to influence the accuracy of such ...
متن کاملPRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R
Precision-recall (PR) and receiver operating characteristic (ROC) curves are valuable measures of classifier performance. Here, we present the R-package PRROC, which allows for computing and visualizing both PR and ROC curves. In contrast to available R-packages, PRROC allows for computing PR and ROC curves and areas under these curves for soft-labeled data using a continuous interpolation betw...
متن کامل